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Abstract. Iterative averaging, which has previously been shown to be equivalent to the 
renormalisation group, was applied directly to the Navier-Stokes equations in k space. 
The better frequency separation achieved by this technique (when compared to convention 
RG filtering and averaging operations) was shown to be due to the order in which operations 
were carried out, rather than to any difference in underlying assumptions. An expression 
for the eddy viscosity for wavenumber scales k s  k, (say) was obtained in terms of the 
energy spectrum for k 3 k,. For k << k,, the eddy viscosity became constant. For k + k ,  the 
eddy viscosity had a gentle roll-off, which may be compared with the cusp at k = k, found 
with renormalised perturbation theories. 

1. Introduction 

Renormalisation group (RG)  methods (Wilson 1975) offer a powerful new approach 
to the problems of turbulence theory. This applies both to the laminar-turbulent 
transition and to the statistical description of well-developed turbulence, although it 
is only the latter which concerns us here. 

As yet the application of RG to the statistical theory of turbulence is in its infancy 
and the supremacy of the renormalised perturbation theories (e.g. Kraichnan 1959, 
Kraichnan and Herring 1978, McComb 1978, McComb and Shanmugasundaram 1984a) 
in tackling the closure of the moment hierarchy is unlikely to be challenged for some 
time. A general discussion of RG and turbulence has been given by Kraichnan (1982). 
Here we shall restrict our attention to the relatively simple problem of calculating the 
mean effect of the small-scale motions (eddies) on the large scales. This offers a 
prescription for turbulent calculations, in that the large scales may be computed by 
direct numerical simulation, and the mean effect of the small scales represented 
analytically by an eddy viscosity. This technique (known as large eddy simulation) is 
currently receiving much attention in engineering studies of turbulence, with the 
subgrid-scale eddy viscosity being treated phenomenologically (e.g. see Voke and 
CollinS 1983, Rogallo and Moin 1984). 

Of course, the idea that eddies of wavenumber k* k ,  (say) act, on average, like 
an effective viscosity on eddies of k s k, is not new. Heisenberg (1948) used this idea 
as the basis of what is one of the better known phenomenological theories of the 
turbulent cascade. The basic idea has intuitive appeal, but, as Batchelor (1971) has 
pointed out, in the neighbourhood of k = k, it becomes difficult to justify. A quantitative 
analysis of this point has been given by Kraichnan (1976), who used renormalised 
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perturbation theory to calculate the eddy viscosity v(klk,) for k s  k, in terms of the 
energy spectrum at k >  k,. Kraichnan found that v(klk,)+constant x a1’2~1’3kc4/3 as 
k + << k,. This was based on the assumption that the energy spectrum was given by 
the Kolmogorov form 

E ( k )  = a ~ ~ ‘ ~ k - ~ / ~  (1.1) 

where a is constant and E is the energy dissipation rate. With the same underlying 
assumption, the Heisenberg analysis gives a similar result. However, Kraichnan’s 
(1976) analysis shows that U( klk,) exhibits a marked cusp at k + k,. This cusp is due 
to the strong local energy transfers across k = k,. 

More recently, RG theory has been applied to this problem. Rose (1977) used this 
method to analyse the mathematically similar problem of passive scalar convection. 
A more general method of iterative averaging has been shown to be equivalent to RG 

(McComb 1982) and to lead to a Heisenberg-type effective viscosity for the energy 
cascade (McComb and Shanmugasundaram 1983). 

Previously our theory has been presented (McComb 1982) as an iterative time- 
averaging of the equations of motion. Connection with RG was made by ( a )  Fourier- 
transforming into w space, and ( b )  invoking the Taylor hypothesis of frozen convection 
to take the analysis into k space. Formally, therefore, we regarded our calculation as 
giving the ‘isotropic part’ of an (in general) anisotropic eddy viscosity. WiYalso noted 
(McComb and Shanmugasundaram 1983) that a strength of our calculation was that 
it-unlike conventional RG theory-did not introduce a triple moment of the low-k 
modes into the low-k equation in the process of eliminating high-k modes. Our 
objective in the present paper is, firstly, to show that iterative averaging may be 
employed directly in k space, with exactly the same assumptions as the conventional 
RG analysis, and yet achieve the better separation of the frequencies just referred to. 
Secondly, to present some calculations for the effective viscosity at k s k,. We begin 
in the next section by introducing the basic equations and discussing the conventional 
RG approach to them. 

2. The basic equations 

Let us consider an incompressible fluid of molecular viscosity vo occupying a cubical 
box of side L. At a later stage we shall take the limit L-+w (which is required for 
rigorous isotropy) and summations will be replaced by integrals. If we let the velocity 
field be U,(x, t )  then the Fourier components of this are defined by 

U,(x, t )=z U,(k, t )exp( ik*x) .  (2.1) 
k 

The equatio-n of motion may be written as 

and the continuity equation becomes 

k,U,(k, t ) = O  

where the inertial-transfer operator Map,(  k )  is defined by 

M,p , (k )  = (2i)-’(kpQ&)+ k,D, , (k) )  
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and 

& , ( A )  = a,, - k,k,jkl-2. 

For isotropic turbulence, the pair correlation of velocities takes the form 
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(2.5) 

(2.6) 

where ( ) means the average value, and the expression for the energy spectrum follows 
in the usual way: 

E ( k ,  t ) = 4 r k 2 Q ( k ;  t, t). (2.7) 

Let us now apply RG theory to the velocity field in much the same way as Rose 
(1977) applied it to passive scalar convection. We begin by taking our cut-off wavenum- 
ber to be k,= ko, where k, is large and, in general, of the order of the Kolmogorov 
dissipation wavenumber kd = ( E /  

k s ko 

We divide the velocity field at k = ko into 

U,(k, t )  = U,'(k, t )  

= UZ(k,  t )  k 2 ko. (2.8) 

The procedure then involves two stages. 
( a )  Eliminate the high-k modes by solving the equation for U: (obtained from 

(2.2)) and substituting the solution in the equation for U,'. Average over the high-k 
modes. 

( b )  Rescale k, t and U,' so that the new equation looks like the original Navier- 
Stokes equation. This step involves the introduction of a renormalised eddy viscosity. 

These two steps are then repeated for k, = k, < k,, and so on, until the scaled eddy 
viscosity reaches a fixed point. 

The main problem faced when trying to implement this programme is how to tackle 
terms which couple U,' and U:. The advantage of the RG approach is that we can 
make some approximations. For example, the approximations made by Rose (1977) 
seem perfectly reasonable. They are as follows. 

(i) U,' and U: can be treated as statistically independent. 
(i i)  In any realisation, the U: evolve much faster than the U:. 
(iii) U: is much smaller than U,' and the second order of small quantities may 

be neglected. 
However, as we pointed out earlier, even with these approximations the equation 

for the low-k modes received a contribution from the high-k modes which includes 
the triple moment (U'U'U'),  as well as the required increment to the effective 
viscosity. In the next section we shall show that this does not happen with iterative 
averaging, even when implemented directly in k space and with the approximations 
listed above. 

3. Iterative averaging and RG 

Let us again divide up the velocity field at k = ko, but this time we use a different 
notation to help distinguish our own approach from the RG analysis discussed in the 
previous section. 
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We put 

Un(k t ) =  U i ( k  t )  k C  k ,  

= U:( k, t )  k 2 ko. ( 3 . 1 )  

The averaging process is taken to be an ensemble average over the small scales such that 

( U n ( k  t)) = U i ( k ,  t )  

( U , ( k ,  t ) )  = U,(k ,  t )  
( 3 . 2 )  

( U:( k, t ) )  = 0. 

Substituting ( 3 . 1 )  into ( 2 . 2 )  and averaging according to ( 3 . 2 )  we obtain the low- 

This is now our basic equation and our main objective is to eliminate the explicit terms 
with wavenumbers greater than ko, which already only appear in a statistical sense 
through (U'U'). We form the high-frequency equation by substituting ( 3 . 3 )  back into 
equation ( 2 . 2 ) ,  with the result: 

=C M a p y ( k ) 1 2 U p (  j ,  2) U t ( k  - j ,  t )  + U g ( j ,  t )  U t ( k  - j ,  f )  
j 

- ( G ( j ,  t )  U t ( k  - j ,  tj)l. ( 3 . 4 )  

With the approximations listed in the previous section, the solution to ( 3 . 4 )  may now 
be written as 

U:(k, t )  = 2(  vok2)- '  Mn, , (k )  U i ( j ,  t )  U:(k  - j ,  t ) .  ( 3 . 5 )  
j 

We now wish to obtain an expression for ( U i ( j ,  t )  U : ( k  - j ,  t ) )  which occurs in 
the RHS of equation ( 3 . 3 ) .  Multiplying both sides of ( 3 . 5 )  by U:,(&', t )  and averaging, 
we then re-label as appropriate and remove dummy variables to avoid confusion t9 
obtain 

( U i ( j ,  t ) U t ( k - j ,  t ) ) = 2 ( v 0 j 2 ) - '  C t ) ( U : ( j - P ,  t ) U t ( k - j ,  t ) ) .  ( 3 . 6 )  

Now, from ( 2 . 6 ) ,  with an obvious extension of the notation, we have 
P 

where homogeneity implies 

j - p +  k - j  = 0. 

Therefore 

k = p .  
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Substituting (3.7) into (3.6) and summing over p to eliminate 8, we obtain 

( W ,  t )  U t ( k  -j, t h  

= 2( voj2)-’ ( - ; ) 3 ~ p p 8 ( j ) ~ a y ( k  - j ) Q , + ( ~ k  -ill t )  ~ , ( k ,  t ) .  (3.8) 

Finally we substitute (3.8) into the RHS of equation (3.3). In the process we take 
two steps. Thus: 

(i)  M a p y ( k )  U , ( k ,  t )  = Mppy(k )  U , ( k  t )  

(ii) (27 /  L)’ c += 1 d3 j  as L+co  
i 

with the result 

( i + v o k 2 + 8 v o ( k ,  t)k2 U;(&, t )  

Os k s  ko (3.9) 

1 
=C M a p y ( k )  U&j, t )  U , ( k  -j, t )  

j 

where 

(3.10) 

(3.11) 

This procedure is then repeated for successive wavenumbers k,, k2, .  . . , k,, . . . , such 
that ko > k, > k, . . . > k, > . . . . By induction, the iteration for k, yields 

($+v,(k, t)k2+6v,(k, t)k2 

where the effective viscosity satisfies 

Yn+l(k, t )  = v,(k, t ) +  6v,(k, t )  

and 

(3.12) 

(3.13) 

(3.14) 

for k , s j ,  lk-jl<k,-, and O s k s k , .  

4. RG calculation of the effective viscosity 

Calculations have been carried out for the stationary case where the spectrum may be 
taken as the Kolmogorov form (1.1). The wavenumber bands are arbitrarily chosen as 

k, = h“ko O s h s l  (4.1) 
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and we make the scaling transformation 

The scaled effective viscosity vf is defined by 

v , ( k , L )  = a l ” ~ ~ ’ ~ k ~ ” / ’ v ~ ( L )  

and equations (3.13) and (3.14) become 

~ f + ~ (  L) = h4’3{ v f (  h i )  + S v f (  h L ) }  
and 

(4.3) 

(4.4) 

and 1 si Ii-ils K1.  
Extensive computations of equations (4.3)-(4.5) have been carried out in connection 

with the formulation of the large eddy simulation equations for isotropic turbulence, 
and these will be reported elsewhere (McComb and Shanmugasundaram 1985). We 
shall note the general result that the recursion relation was found to reach a fixed 
point V : + ~ ( L )  = v f ( L ) =  v X ( L )  and that this fixed point was independent of the RG 

parameters h and v f ,  and confine ourselves here to one example of the behaviour of 

In figure 1, we show v f ( L )  plotted against k“ for various values of n and k‘ in the 
range L< lo2. Although we are concerned with vX(R) for { s  1 (particularly 
when n = N ) ,  the transformation (4.4) shifts the effective viscosity from L< 1 to L> 1 .  
On each cycle n, we need to know U; for (> 1 in order to calculate v t + l  for L< 1 .  
From figure 1 ,  the evolution of vf with n for L> 1 is seen to settle down to the expected 

v f (L ) .  

I I I 1 7 

0 

I , I  I I  , I  

F 

Figure 1. Evolution of the scaled eddy viscosity for all i :  h = 0.7. 
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k'-4'3 law. This has been previously reported (McComb and Shanmugasundaram j983) 
but in that reference the limits on the 7 integration were incorrectly given as 1 < j < a, 
which led to a numerical error. For example, we calculated the Kolmogorov constant 
to be a - 5.57. With the correct wavenumber limits this result becomes a = 1.8. 

1 in more detail. Clearly as n 
increases, v: reaches a fixed point (constant value) for &<c 1. As Kraichnan (1976) 
has pointed out, it is only when the high and low modes are so widely separated that 
the analogy with molecular viscosity becomes good. In this range we agree quite well 
with Kraichnan's result. However, as R-. 1, we would argue that the gentle roll-off 
seen in figure 2 (when compared with the cusp found with renormalised perturbation 
theory) suggests that RG is better at handling the strong local energy transfers across 
k = 1, although it should be noted that the two methods use different definitions of 
the effective viscosity. 

In figure 2, we show the behaviour of v:( R) for k 

P A  3 3" 
i 

Figure 2. Evolution of the scaled eddy viscosity for 1.0; h =0.7 

5. Conclusions 

In view of the results presented, it seems that iterative averaging is a promising method 
of applying RG theory to the statistical description of well developed turbulence. There 
seem to be three key points in the method. 

(i) In formulating the low-frequency equation, the high frequencies only appear 
in an average sense, through the variance: see equation (3.3). 

(i i)  When the variance of the high-frequency modes is calculated, the labelling k 
vector is found to be restricted to Os k <  k n ) :  see equations (3.8) and (3.9). Thus we 
have correctly identified the contribution to the eddy viscosity in the low-frequency 
equation. 

( i i i )  No spurious low-frequency terms are introduced into the low-frequency 
equation in the process of eliminating the high-frequency modes: again, see equations 
(3.8) and (3.9). 

A study of the underlying approximations can be made in conjunction with a 
numerical simulation, and work has begun on this problem. 
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